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Abstract

Development of methodologies for the geometric characterization of cutting edges

is of significant current interest, in light of the profound influence that the edge

geometry wields on virtually every machining response, and the evolving capability

for generating tailored edges. This paper proposes the parametric modeling of the

tool edge geometry through the application of free-knot B-splines that comprise

three piecewise segments corresponding to the cutting edge profile and the two tool

faces. The transition points that demarcate the cutting edge from the tool faces

are objectively and robustly identified by the adaptive placement of the knots that

minimizes the residual error from fitting the B-spline to the tool profile data. On

identification of the cutting edge, the edge profile is modeled by parametric quadrat-

ics to yield four geometrically-relevant, contour-based parameters that characterize

both symmetric and asymmetric honed edges.
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1 Introduction

The role of the meso-geometry of the cutting edge on the mechanics of chip

formation was first documented by Albrecht [1] in 1960. It has however taken

several decades since, for this important aspect to be accorded its due con-

sideration. The geometry of the edge has now been demonstrated to affect

practically every machining response including: forces [2], temperature distri-

bution [3], tool life [4], surface finish [5] and residual stress [6], in addition to
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wielding a controlling influence on process stability [7]. Consequently, there

is much interest of late amongst the machining research community on the

generation and characterization of the cutting edge.

Conventional edge preparation techniques such as brush honing and micro-

blasting correspond to significant variability in edge geometry, not just be-

tween edges but also along the profile of the same edge [8]. This is of particular

detriment in the machining of high-value components in terms of robust tool

performance. Avenues to addressing this issue have involved process develop-

ments such as 5-axis brush honing [9], and the conception of novel processes

that entail magneto-abrasive [10], laser [11] and electro erosion [12] techniques.

Further to the variability arising from the process itself, it is intriguing to note

that the lack of a standard characterization methodology is also a factor con-

tributing to variability, as identified in [13].

In terms of edge characterization, it has thus far been expedient in most

instances to specify the geometry of honed edges by a simple edge radius

parameter. This inherently assumes the edge profile that bridges the rake and

flank faces to conform to an arc of a circle. This need not however be the case,

and indeed tool performance may be enhanced by rendering the cutting edge to

be appropriately asymmetric [3]. Given the critical influence of edge geometric

attributes on process responses, and the evolving capability of aforementioned

novel processes in the generation of tailored cutting edges, it is imperative

to develop methodologies for the comprehensive geometric characterization of

the cutting edge.

Denkena et al. [3] proposed that the edge geometry be characterized with

reference to the virtual tool tip derived from the linear extension of flank and

rake faces (Fig. 1a). Any asymmetry in the edge geometry is signified by the

ratio of distances Sα and Sγ from the tool tip to points 1 and 2, from where

the edge profile diverges away from the flank and rake faces, respectively. The

degree of edge flattening is specified by parameter ∆r which is the distance

from the virtual tool tip to the apex of the edge profile, and parameter ϕ

locates the tool apex relative to the tool faces. Such a characterization is simple

and facilitates easy visualization of the edge; however, the said parameters

are evaluated based on just three points on the edge profile, which are not

adequate to uniquely characterize the edge geometry. Furthermore, ref. [3] did

not specify a method to objectively determine the transition points 1 and 2
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Fig. 1. Edge characterization methods due to: (a) Denkena et al. [3], (b) Rodriguez

[14], and (c & d) Wyen et al. [15].

wherefrom the edge profile deviates off the tool faces.

Rodriguez [14] attempted to address the issue above by defining the transition

points 1 and 2 in terms of the intersection of the edge profile (Fig. 1b) with the

uncut chip thickness h, with the orientation of the edge specified with respect

to the effective rake angle γe. This renders the edge geometric parameters to

be dependent on the cutting conditions rather than be intrinsic to the cut-

ting edge. Rodriguez further approximated the edge profile by a sixth-degree

polynomial, with the unfavorable implication [15] that the error between the

edge profile and the interpolating polynomial of such high order could be un-

acceptably high, due to oscillation effects known as Runge’s phenomenon in

numerical analysis.

Wyen et al. [15] recently proposed a method for identifying the transition

points that delineate the meso-geometry of the cutting edge from the flank

and rake faces of the tool. The first step in this iterative method involves least

squares fitting of straight lines to represent the tool faces over a domain that

spans a certain preset distance from the apex of the edge profile. These lines

are extended to locate the virtual tool tip to enable the computation of the

point of intersection of the edge profile and the bisector of the wedge angle β

(point 3 in Fig. 1c). A circle is then constructed such that it passes through
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point 3 and is tangential to the said straight lines representing the tool faces.

Points 1 and 2 at which this circle intersects the straight lines are considered

first approximations for the transition points, which constitute the updated

upper limit for the subsequent least squares fitting of the tool faces. The steps

above are iterated to refine the location of the transition points.

As the edge is approximated as a circle in this method, any deviations from the

ideal such as the edge being asymmetric adversely affects edge identification.

In consideration of this, Wyen et al. [15] proposed that the fit be reconsidered

should the value of the coefficient of determination R2 be less than a predefined

value, say 90%. They further proposed that any cutting edge asymmetry be

denoted by the ratio of distances Dα and Dγ measured from a line passing

through point 3 and perpendicular to the wedge angle bisector, to the edge

profile, as shown in Fig. 1d. This is different from the proposal in [3] in that

the distances Dα and Dγ are largely independent of the transition points.

The review of the relevant literature above clearly indicates that a novel ap-

proach is required for the identification and characterization of the cutting

edge, given that published methods refer to ideal geometric shapes and to

discrete points on the edge profile. In this context, Section 2 of this paper

proposes the application of parametric B-splines for the contour-based iden-

tification of the transition points that demarcate the cutting edge from the

tool faces. Being piecewise polynomials, B-splines are a logical choice for such

identification, as the flank/rake faces and the edge profile that constitute the

cutting edge are themselves piecewise in nature. The robustness of such an

identification method is investigated in light of several potential sources of

uncertainties. Following edge identification, the characterization of the cut-

ting edge profile using parametric quadratics is proposed in Section 3. Four

contour-based parameters are derived to uniquely quantify the geometry of a

edge, which are exemplified in terms of their application to both symmetric

and asymmetric honed edges.

2 Cutting edge identification

As the meso-geometry of a tool edge profile comprises two tool faces that

flank the cutting edge (Fig. 2), unambiguous identification of the transition

points that separate the edge from the tool faces is the first step that should

precede edge characterization. The critical importance of this is illustrated in
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Fig. 2. Terminology of tool edge profile.

Fig. 3, wherein it is shown that the same symmetrically honed edge could

correspond to significantly different edge radius (rβ) values, depending on

where the color-coded sets of transition points are deemed to be located. The

uncertainty imposed by the boundaries of the cutting edge domain necessitates

an edge identification method capable of uniquely and objectively demarcating

the cutting edge from the rake and flank faces.

The key idea in the proposed contour-based edge identification method is that

the edge geometry may be modeled by three piecewise segments to represent

the flank/rake faces and the cutting edge, with zero and first geometric con-

tinuity at the joining points. Multi-degree splines are most suited to this end,

with the first and third sections corresponding to flank and rake faces con-

strained to be linear, while assuming higher orders for the curvilinear cutting

edge in between. As the approximation algorithms for such curves are some-

what complex, a simpler alternative is to employ a single-degree piecewise

curve, wherein the first and third segments are geometrically constrained to

conform to the linear shape of the tool faces. The profile of the cutting edge

is usually free of any change in the direction of curvature, and hence a second

Fig. 3. Effect of deemed edge boundary on edge radius rβ.
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degree curve should suffice for modeling it.

In terms of cutting edge identification, the joining points of the spline sections

assume great importance as they correspond to the transition points that

demarcate the cutting edge from the tool faces at either ends. With this in

view, an appropriate family of spline curves would be the one that enables the

curve fitting process to be optimized with respect to the points that connect

the three segments. A family of curves that offers this feature are piecewise

parametric polynomials called B-splines [16], which are defined as:

C(u) =
n∑
i=0

Ni,p(u)Pi (1)

where u ∈ [0, 1], and Pi are n + 1 control points that represent the polyline

form of the curve in a way that the actual curve always lies completely in

their convex hull. Ni,p(u) are B-spline basis functions of degree p computed

recursively as:

Ni,0(u) =


1 if ui ≤ u ≤ ui+1

0 otherwise

(2)

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

Eqn. (1) can be expressed as:

C = NP (3)

where N and P are matrices of basis function coefficients and control points,

respectively.

Basis functions facilitate the piecewise nature of B-spline curves by making

use of parametric values called knots (ui). Each ui is one of (m+ 1) B-spline

knots from the knot vector [u0, u1, . . . , um] and corresponds to a parameter at

which one polynomial section ends and another begins. In other words, knots

may be considered as division points that subdivide the curve into segments

with (p − 1) continuity at the joining points. For B-spline curves, the knot

vector is usually on the [0, 1] interval, with the (p + 1) first and last knots
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being identical, as in:

[u0 = u1 = . . . = up = 0, up+2, . . . , um−p−1, um−p = um−p+1

= . . . = um−1 = um = 1]
(4)

The number of knots (m + 1), the degree of the B-spline curve p and the

number of control points (n+ 1) are related as:

m = p+ n+ 1 (5)

As indicated previously, the proposed method uses a quadratic B-spline to

model the cutting edge. For a second degree B-spline to constitute three

polynomial sections that correspond to the flank/rake faces and the cut-

ting edge, the knot vector should have three spans and will be of the form

[0, 0, 0, u1, u2, 1, 1, 1]. Based on this knot vector, the second degree basis func-

tion matrix N can be computed from eqn. (2) to be:



(u1−u)2
u21

−u2

u21
+ 2u

u1
− u2

u1u2
u2

u1u2
0 0

0 (u2−u)2
u2(u2−u1)

(u2−u2)u1−u2+2uu2−u2u2−u2u2
u2(u2−u1)(1−u1)

(u−u1)2
(1−u1)(u2−u1) 0

0 0 (1−u2)
(1−u1)(1−u2)

(1−u2)(u−u1)
(1−u1)(1−u2) + (1−u)(u−u2)

(1−u2)
(u−u2)2
(1−u2)2


(6)

For a second degree polynomial (p = 2) with eight knots (m + 1 = 8), five

control points (n + 1 = 5) are required to uniquely define the curve, as per

eqn. 5. Knowing u1,u2 and five control points, the desired B-spline curve C(u)

is fully defined using eqn. (3) and eqn. (6), and the cutting edge will be

subdivided into three quadratic profiles joining smoothly at u1 and u2, as

shown in Fig. 4. The equation for each individual section of the cutting edge

profile can be derived from the corresponding row of the N matrix (eqn. 6)

multiplied by the control points matrix P .

The profile of a tool edge can be acquired by techniques such as profilome-

try, white light interferometry and confocal microscopy. With the profile data

points D = [D1, . . . , Dq] in place, the edge identification algorithm reduces to

the determination of u1 and u2. However, before proceeding with such fitting

computations, a set of parameters t = [t1, . . . , tq] should initially be assigned

to the data points so that C(ti) ≈ Di holds subsequent to fitting, a pro-

cess known as parametrization. Among the different methods available for
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Fig. 4. Edge identification using a quadratic B-spline with three sections.

parametrization, the method used in this research refers to uniformly spaced

parameters:

ti = i−1
q

; i = 1 : q (7)

The algorithm for finding the cutting edge profile is then equivalent to the

minimization of the least square B-spline curve fitting function:

L =
q∑
i=1

|C(ti)−Di|2 (8)

The unknowns are five control points (n+ 1 = 5), u1 and u2.

If the values of u1 and u2 are predetermined (as in uniformly spaced knot

generation, e.g. u1 = 1/3 and u2 = 2/3), the problem simplifies to a fixed knot

B-spline approximation, and eqn. (8) will reduce to a linear least square prob-

lem that can be solved by simple linear algebraic formulations. However, with

u1 and u2 unknown, the fit is allowed to modify the boundaries of sections for

the best-fit three-segment quadratic polynomial. This is a key point in that

the transition points that demarcate the cutting edge from the tool faces are

objectively and robustly identified by the adaptive placement of the knots that

minimizes the residual error from fitting the B-spline to the tool profile data.

This type of B-spline curve fitting is categorized as free-knot B-spline approx-

imation, and as a result eqn. (8) will be a nonlinear least squares problem,

which can be solved by iterative numerical methods like Gauss-Newton [17].

To render the first and third segments corresponding to flank and rake faces

to conform to the geometry of the tool faces, the approximation procedure is
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further coupled with two geometric constraints:

dCy
dCx

(0) = m1

dCy
dCx

(1) = m2

(9)

where m1 and m2 are the slopes of the lines representing the flank and rake

faces.

In the context of the background above, the steps to cutting edge identification

are enumerated below and accordingly illustrated in Fig. 5, with the virtual

tool tip as the origin of the coordinate system.

(1) Having the profile data points (D0), two horizontal margins that best

include the linear sections on rake and flank faces are given as inputs.

Based on linear regression of the points contained between these margins,

the rake and flank lines, and the origin of the coordinate system are

constituted.

(2) Using these rake and flank lines, the wedge angle β is computed. If the

Fig. 5. Cutting edge identification by free-knot B-spline approximation.
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computed wedge angle is not within a predefined margin (say ±5%) of the

nominal value, step one is repeated with two updated horizontal marginal

lines.

(3) Profile data points are then rotated (D) such that the wedge angle bi-

sector coincides with the Y axis, for which the rake and flank line slopes

(m1 and m2) will be equal but with opposite signs.

(4) Profile data points are then parameterized using eqn. (7).

(5) Eqn. (8) is solved for profile points (D) starting from the lower marginal

line using Gauss-Newton [17] method, with eqn. (9) as constraints. The

resultant u1 and u2 will provide the first guess for the transition points,

with the cutting edge bounded between C(u1) and C(u2).

(6) If the closest distance of C(u1) (or C(u2)) to flank (or rake) line is more

than a threshold value (say 3% of |C(u2) − C(u1)|), u1 (or u2) will be

decreased (or increased) until this condition is met.

(7) The closest points on the actual profile (D) to C(u1) and C(u2) will be

the start and end points of the edge region.

The algorithm above is applicable to all edge geometries; however, if the cut-

ting edge profile contains an abrupt slope change between the sections that

the quadratic polynomial cannot closely follow, the precise identification of

the cutting edge is affected. One example of such abrupt geometric change is

a T-land (chamfer) edge geometry for which all three tool sections are linear.

It is suggested that first degree B-splines rather than quadratics be used in

such an instance. All other steps remain unaffected.

Point-based cutting edge identification methods which consider the edge bound-

aries to be defined by the points from where the edge profile separates off the

rake and flank lines are quite sensitive to minor form errors and profile irreg-

ularities. This issue is addressed by the proposed contour-based method, as

illustrated in the inset on the left of Fig. 5, wherein the transition point can

be seen to be not affected by variations in the form of the tool profile.

The proposed algorithm is intended to minimize the influence of potential

sources of uncertainty in cutting edge identification. This algorithm is based

on the fact that rake and flank geometries can be rendered as two lines. Inap-

propriate consideration of the tool macro-geometry comprising the rake and

flank faces might result in improper cutting edge identification. As shown in

Fig. 6, points lying between horizontal margins 1 and 2 contain the actual
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Fig. 6. Identification of tool face margins in consideration of wedge angle β.

macro-geometry of the cutting tool, referring to the nominal wedge angle β12.

Erroneous consideration of points between margins 2 and 3, or 3 and 4, results

in entirely different flank and rake lines that respectively refer to wedge an-

gles β23 and β34 that are different from the nominal value. The comparison of

the computed tool wedge angle with the nominal value in the second step of

the identification algorithm precludes such misinterpretations. Step 6, though

rarely required, is added to ensure that the edge is properly determined.

Fig. 7 depicts three edge profiles with a point uncertainty of 1 µm to demon-

strate the robustness of the edge identification method against such. The vari-

ability in the location of the edge identification points is less than 2 µm, which

highlights the superiority of a contour-based approach. One of the sources of

uncertainties in the identification of the cutting edge refers to the distance

Fig. 7. Robustness of edge identification against point uncertainty.
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Fig. 8. Invariability of edge identification algorithm to tool face region considered.

from the tool tip over which rake/flank faces are being considered for model-

ing. While unreasonably too big or too small values of this distance will lead

to inaccurate edge identification, any algorithm should yet be as invariable as

possible to this factor. Fig. 8 illustrates the robustness of the proposed edge

identification method against the marginal distance (lower margin in Fig. 5)

by taking advantage of free-knot B-spline approximation. Intentional trans-

lation of the lower marginal line from 80 µm up to 170 µm can be seen to

induce a variability of less than 2 µm in the identification of the cutting edge

boundaries.

3 Cutting edge characterization

As reviewed in section 1, methods currently used to characterize edge geome-

try refer to parameters that are evaluated based on discrete points on the edge

profile. Fig. 9 illustrates issues arising from such an approach. Fig. 9a shows

two edges that would refer to different machining responses to correspond to

identical Sα and Sγ parameters used in ref. [3]; similarly, Fig. 9b illustrates the

limitation of parameters Dα and Dγ proposed in ref. [15] in being able to ef-

fectively distinguish the edges, as the two entirely different profiles correspond

to identical parameters.

To characterize an edge by a comprehensive set of contour-based parameters,

it may be modeled by a geometric curve that can be adequately fit to various

edge geometries. To this end, it is proposed herein that parametric quadratic
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Fig. 9. Limitations of current edge characterization parameters.

curves be fit to the edge profile:

x(u) = a2u
2 + a1u+ a0

y(u) = b2u
2 + b1u+ b0

(10)

Parametric quadratic curves are simple polynomials for which standard fitting

algorithms are commonly available, one of which is the B-spline approxima-

tion.

In reference to the coordinate system shown in Fig. 10, the cutting edge is

modeled by fitting a second degree parametric curve with u ∈ [0, 1] to the

spatial coordinates of the cutting edge. The quadratic equations of the edge

may be obtained directly from the parametric equations of the second segment

of the tool geometry, which refers to the cutting edge profile obtained during

the edge identification process (as presented in Section 2). This requires re-

parametrization from [u1, u2] to [0, 1] by replacing u with [(u− u1)/(u2 − u1)].
Alternatively, an additional single span approximation may be accomplished

with a fixed knot (ui = [0, 0, 0, 1, 1, 1]) B-spline using linear algebraic algo-

rithms. The fit of the B-spline to the cutting edge profile may be evaluated in

terms of goodness-of-fit measures such as the coefficient of determination R2,
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Fig. 10. Proposed edge characterization parameters.

as suggested in ref. [15].

In the interest of rendering the edge characterization parameters to compre-

hensible and easy to visualize, the six constants in eqn. (10) need be viewed

in light of parameters that are of physical relevance. It can be shown that

the implicit form of a parametric quadratic curve is a parabola [18] with the

general form:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (11)

subject to B2 = 4AC. Accordingly, the minimum number of parameters to

construct the edge is four, since parabolas have four degrees of freedom in

the two-dimensional plane. However, to designate the cutting edge margins,

two of these parameters have to correspond to the two points referring to the

start and end points of the cutting edge profile. If these points are assumed

to lie on the rake and flank lines, the cutting edge profile can be fully defined

using four parameters, considering that for the given tool wedge angle β,

x(0) = −y(0) tan(β/2) and x(1) = y(1) tan(β/2). Fig. 10 depicts these four

characterization parameters to comprise two form parameters and two edge

marginal parameters. If ua = (−b1/2b2) refers to the apex of the cutting edge,

the two form parameters are:

(1) Sa = x(ua) = a2(−b1/2b2)2 + a1(−b1/2b2) + a0, a measure of profile

asymmetry, and

(2) ra = [(a1b2 − a2b1)2/(2b23)], the radius of curvature of the apex.

The two edge marginal parameters:
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(3) Sf = a0

(4) Sr = a2 + a1 + a0

define the region that the edge profile extends to, with respect to the flank

and rake faces, respectively. If the assumption of the start and end points of

the edge profile being on the flank and rake lines is relaxed, the following two

additional parameters (see Fig. 10) are required to fully define the cutting

edge:

(5) fa = y(ua) = (−b21/4b2) + b0, a measure of cutting edge flatness, and

(6) θ = (1/2)tan−1[(−2a2b2)/(b2
2 − a22)], the angle between the axis of sym-

metry of the parabola and the wedge angle bisector.

The four parameters Sa, ra, Sf and Sr can represent both symmetric and asym-

metric edge profiles. Sf and Sr define the margins of the cutting edge profile

and cannot therefore represent any asymmetry in the form of the edge pro-

file. Form asymmetry is well brought out by parameter Sa that designates the

location of the edge apex. Parameter ra denotes the roundness of the edge

profile.

Fig. 11 illustrates the fit of a B-spline to a symmetric edge and an asymmetric

edge, the coefficient of determination R2 for both of which exceeded 98%. For

the symmetric profile (Fig. 11a), the cutting edge marginal parameters Sf and

Sr are essentially the same (see Table 1). The symmetry of the edge is also

denoted by the Sa and θ parameters being close to zero. If the cutting edge

refers to an arc of a circle, ra ≈ rβ. For this profile, rβ was measured using

circular regression over the points on the cutting edge profile to be 53 µm. For

the asymmetrically honed insert shown in Fig. 11b, edge asymmetry is clearly

Fig. 11. Characterization of: (a) symmetric, and (b) asymmetric edges.
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signified in the disparity between Sf and Sr values, and the parameters Sa

and θ assuming non-zero values that are larger relative to those corresponding

to the symmetric edge.

Table 1

Cutting edge characterization parameters

Parameter Sa(µm) ra(µm) Sf (µm) Sr(µm) fa(µm) θ(◦)

Symmetric edge 0 50 41 42 25 -2

Asymmetric edge 6 65 46 62 33 11

It may be noted that the proposed characterization parameters enable the

calculation of the parametric quadratic coefficients of eqn. (10), which serves

to reconstruct the edge profile for further numerical analyses such as finite

element modeling of cutting processes.

4 Conclusions

A parametric approach to the identification and characterization of the meso-

geometry of honed cutting edges has been presented. Considering that the

profile of a honed cutting edge transitions smoothly into the rake and clearance

faces that flank the edge, unambiguous identification of the transition points

that delimit the cutting edge from the tool faces has been demonstrated to

be a critically important step that ought to precede edge characterization.

Accordingly, parametric modeling of the tool edge geometry through B-splines

that are presently standard modeling tools in CAD/CAM applications has

been proposed.

The B-splines considered comprise three piecewise segments corresponding to

the cutting edge profile and the two tool faces. The transition points that

demarcate the cutting edge from the tool faces are objectively identified by

the adaptive placement of the knots that minimizes the residual error re-

ferring to fitting of the B-spline to the tool profile data. This methodology

has been evaluated to be robust against point uncertainty and the geometric

domain over which the tool profile is modeled. Subsequent to edge identifica-

tion, the edge has been modeled by parametric quadratics. The application of

four geometrically-relevant, contour-based parameters derived from the best

16



parabolic fit to the cutting edge in characterizing both symmetric and asym-

metric honed edges is also demonstrated.

These parameters serve to reconstruct the cutting edge geometry for numerical

analyses of cutting processes, and enable the specification of tool edge geome-

tries that are tailored to optimize the cutting response in the manufacture of

high-value components.
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